
Bilkent University

CS 353 Term Project
Travel Agency Data Management System - Group 9

Design Report
Project Group Members:

Zübeyir Bodur - 21702382

Funda Tan - 21801861

Emine Ezgi Saygılı - 21802871

Abdul Razak Daher Khatib - 21801340

TA: Mustafa Can Çavdar

Table of Contents
Entity-Relationship Diagram 3

Schemas 6
Tour 6
User 6

Customer 6
Employee 6

Guide 7
Agent 7

Review 7
GuideReview 7
TourReview 8

Activity 8
Festival 8
Concert 9

SightseeingPlace 9
Hotel 9
Discount 10
Reservation 10

TourReservation 10
HotelReservation 10

Room 11
Feedback 11
Language 11
visits 12
speak 12
guides_feedback 12
assign_guide 12
tour_group 13

User Interface Design and Corresponding SQL Statements 13
Common Functionalities 13

Login and Register 14
UI Mockups 14
SQL Queries 15

Book a Tour 18

2

UI Mockups 18
SQL Queries 22
Make the payment accordingly 23
Give feedback (Review) about the tour and the guide 24

Review the tour 24
Review the guide 24

Unique Functionalities 25
Sightseeing Places 25

UI Mockups 25
SQL Queries 26
List all Sightseeing Places Associated with the Tour 26

Wallet 27
Applying Discounts 28

UI Mockups 28
SQL Queries 30
Apply a Discount to Tours 31
Apply a Discount on Extra Activities 31

Languages of Guides 31
UI Mockups 31
SQL Queries 31

Implementation Plan 32

Website 32

References 32

3

1. Entity-Relationship Diagram
We have revised our E/R model based on the feedback given on the Proposal of

the project as follows:

● The guides_feedback relation, which is between Guide, Tour, and Feedback

tables was changed accordingly. All pairs of this relation are now one-to-one, i.e. a

Guide can give one feedback on a specific tour, feedback belongs to a single tour and a

tour has at most one feedback associated with it.

● There is total participation of Discounts in applies relation (between Discount

and Agents), i.e. All Discounts are applied by Agents.

● “make_review” relation (between Customer and Review tables) is now

one-to-one, i.e. a review can be written by one customer.

● The notation error in the “receive” relation is fixed.

● There is total participation of TourReviews in the “tour_rev” relation (between

TourReview and Tour tables), i.e. all tour reviews belong to a single tour.

● There relation “visits”’ (between SightseeingPlace and Tour tables) is now

many-to-many, i.e. a SightseeingPlace might be available in multiple tours.

● The relation “assign_guide” is changed accordingly. One agent assigns only one

guide to some tours. The same agent can assign the same guide to any tour, however,

the time conflicts will be checked by the API. For the system to allow the same (agent,

guide) pair to assign the guide to any tour, the Tour side of the relationship should be

Many.

● Discounts are changed. Since it does not make sense to apply discounts to

reservations one by one, hotels, tours, and activities receive discounts in bulk, i.e. if a

hotel receives a discount, all rooms of the hotels receive a discount and the user

benefits from the discount before making the reservation. The similar applies to extra

activities and tours.

● Tour’s attributes have been changed. Now, every tour has a predetermined

length in days, e.g. 30 days, and they have a start date. Customers only choose the

start date for tour reservations.

4

5

Figure 1: ER Diagram of the Travel Agency Web Application

2. Schemas
2.1. Tour

Tour (tour_id, city, name, tour_start_date, tour_days, tour_descritption, price)

PK: tour_id

Functional Dependencies: tour_id -> city, name, tour_start_date, tour_end_date,

tour_description, price

Form: 3NF

2.2. User

User (ID, first_name, last_name, age, email, phone_number, user_name, password)

PK: ID

Functional Dependencies: ID -> first_name, last_name, age, email, phone_number,

user_name, password

Form: 3NF

2.2.1. Customer

Customer (ID, first_name, last_name, age, email, phone_number, user_name,

password, address, wallet)

PK: ID

Functional Dependencies: ID -> first_name, last_name, age, email, phone_number,

user_name, password, address, wallet

Form: 3NF

2.2.2. Employee

Employee (ID, first_name, last_name, age, email, phone_number, user_name,

password, salary)

PK: ID

6

Functional Dependencies: ID -> first_name, last_name, age, email, phone_number,

user_name, password, salary

Form: 3NF

2.2.2.1. Guide

Guide(ID, first_name, last_name, age, email, phone_number, user_name, password,

salary)

PK: ID

Functional Dependencies: ID -> first_name, last_name, age, email, phone_number,

user_name, password, salary

Form: 3NF

2.2.2.2. Agent

Agent(ID, first_name, last_name, age, email, phone_number, user_name, password,

salary)

PK: ID

Functional Dependencies: ID -> first_name, last_name, age, email, phone_number,

user_name, password, salary

Form: 3NF

2.3. Review

Review(review_id, comment, entry_date, rating, customer_ID)

PK: review_id

FK: customer_ID references Customer

Functional Dependencies: review_id -> comment, entry_date, rating, customer_ID

Form: 3NF

2.3.1. GuideReview

GuideReview(review_id, comment, entry_date, rating, customer_ID, guide_ID)

PK: review_id

7

FK: customer_ID references Customer

FK: guide_ID references Guide

Functional Dependencies: review_id -> comment, entry_date, rating, customer_ID,

guide_ID

Form: 3NF

2.3.2. TourReview

TourReview(review_id, comment, entry_date, rating, ID, tour_id)

PK: review_id

FK: ID references Customer

FK: tour_id references Tour

Functional Dependencies: review_id -> comment, entry_date, rating, ID, tour_id

Form: 3NF

2.4. Activity

Activity(activity_id, activity_name, description, activity_start_time, activity_end_time,

ticket_price, tour_id, discount_id)

PK: activity_id

FK: tour_id references Tour

FK: discount_id references Discount (if no discount is applied NULL)

Functional Dependencies: activity_id -> activity_name, description, activity_start_time,

activity_end_time, ticket_price, tour_id, discount_id

Form: 3NF

2.4.1. Festival

Festival(activity_id, activity_name, description, activity_start_time, activity_end_time,

ticket_price, tour_id, discount_id, food_catalog, age_limit)

PK: activity_id

FK: tour_id references Tour

8

FK: discount_id references Discount (if no discount is applied NULL)

Functional Dependencies: activity_id -> activity_name, description, activity_start_time,

activity_end_time, ticket_price, tour_id, discount_id, food_catalog, age_limit

Form: 3NF

2.4.2. Concert

Concert(activity_id, activity_name, description, activity_start_time, activity_end_time,

ticket_price, tour_id, discount_id, artist_name, genre)

PK: activity_id

FK: tour_id references Tour

FK: discount_id references Discount (if no discount is applied NULL)

Functional Dependencies: activity_id -> activity_name, description, activity_start_time,

activity_end_time, ticket_price, tour_id, discount_id, artist_name, genre

Form: 3NF

2.5. SightseeingPlace

SightseeingPlace(place_id, name, start_time, end_time, location, entry_fee, description)

PK: place_id

Functional Dependencies: place_id -> name, start_time, end_time, location, entry_fee,

description

Form: 3NF

2.6. Hotel

Hotel(hotel_ID, name, city, num_of_stars, discount_id)

PK: hotel_ID

FK: discount_id references Discount

Functional Dependencies: hotel_ID -> name, city, num_of_stars, discount_id

Form: 3NF

9

2.7. Discount

Discount(discount_id, percentage, discount_time_interval, discount_start_time,

discount_type)

PK: discount_id

Functional Dependencies: discount_id -> percentage, discount_time_interval,

discount_start_time, discount_type

Form: 3NF

2.8. Reservation

Reservation(reserve_ID, reserve_start_date, num_reserving, is_booked, customer_ID)

PK: reserve_ID

FK: customer_ID references Customer

Functional Dependencies: reserve_ID -> reserve_start_date, num_reserving,

is_booked, customer_ID

Form: 3NF

2.8.1. TourReservation

TourReservation(reserve_ID, reserve_start_date, num_reserving, is_booked,

customer_ID)

PK: reserve_ID

FK: customer_ID references Customer

Functional Dependencies: reserve_ID -> reserve_start_date, num_reserving, is_booked,

customer_ID

Form: 3NF

2.8.2. HotelReservation

HotelReservation(reserve_ID, reserve_start_date, num_reserving, is_booked,

customer_ID, reserve_end_date, room_id, hotel_ID)

PK: reserve_ID

10

FK: customer_ID references Customer

FK: room_id, hotel_ID references Room

Functional Dependencies: reserve_ID -> reserve_start_date, num_reserving, is_booked,

customer_ID, reserve_end_date, room_id, hotel_ID

Form: 3NF

2.9. Room

Room(room_id, hotel_ID, number, size, price)

PK: room_id, hotel_ID

FK: hotel_ID references Hotel

Functional Dependencies: room_id, hotel_ID -> number, size, price

Form: 3NF

2.10. Feedback

Feedback(feedback_id, content, feedback_time)

PK: feedback_id

Functional Dependencies: feedback_id -> content, feedback_time

Form: 3NF

2.11. Language

Language(language_name, proficiency)

Primary key: language_name

Functional Dependencies:

Form: 3NF

11

2.12. visits

visits(place_id, tour_id)

Primary key: place_id, tour_id

FK: place_id references Sightseeing

FK: tour_id references Tour

Form: 3NF

2.13. speak

speak(ID, language_name)

Primary Key: ID, language_name

FK: ID references Guide

FK: language_name references Language

Form: 3NF

2.14. guides_feedback

This is the relation between Guide, Tour, and Feedback, which represents how a Guide

gives feedback at the end of the Tour.

guides_feedback(feedback_id, ID, tour_id)

PK: feedback_id, ID

FK: feedback_id references Feedback

FK: ID references Guide

FK: tour_id references Tour

Functional Dependencies: feedback_id, ID -> tour_id

12

2.15. assign_guide

This is the relation between Agent, Tour, and Guide, which represents how an Agent

assigns a Guide into a Tour.

assign_guide(guide_ID, agent_ID, tour_id, is_accepted)

PK: guide_ID, agent_ID, tour_id

Unique Key: guide_ID, tour_id

Unique Key: agent_ID, tour_id

FK: tour_id references Tour

FK: agent_ID references Agent

FK: guide_ID references Guide

Functional Dependencies: guide_ID, tour_id -> agent_ID

Functional Dependencies: agent_ID, tour_id -> guide_ID

2.16. tour_group

This is the relation between a Guide, Tour, and Customers

tour_group(customer_ID, guide_ID, tour_id)

PK: customer_ID, guide_ID

FK: tour_id references Tour

FK: agent_ID references Agent

FK: guide_ID references Guide

Functional Dependencies: customer_ID, guide_ID -> tour_id

13

3. User Interface Design and Corresponding SQL
Statements

Below, for each functionality, the necessary SQL Queries and UI mockups are given. In addition,

the common functionalities specified in the Project Functionality Document and the

functionalities unique to this project are separated as well.

3.1. Common Functionalities

Below are the SQL Queries for each functionality. The common functionalities specified

in the Project Functionality Document and the functionalities unique to this project are

separated as below.

3.1.1. Login and Register

3.1.1.1. UI Mockups

Figure 2: Login Page

14

Figure 3: Register Page

3.1.1.2. SQL Queries

Check credentials

The following query string will return the row associated with the Customer if

credentials are correct. The number of rows of this output can be used for the action

to be done in the backend.

SELECT *

FROM Customer

15

WHERE Customer.user_name = @user_name AND Customer.password =

@password;

However, to understand which type of user logged in to the system, the following

queries should be also considered:

SELECT *

FROM Agent

WHERE Agent.user_name = @user_name and Agent.password = @password;

SELECT *

FROM Guide

WHERE Guide.user_name = @user_name and Guide.password = @password;

Check if the username exists

The following queries first check if the same username already exists, when a user

tries to register to the system. If the number of rows returned is more than 1, the

same username already exists. This query will be run before registering any user.

SELECT Sum.username

FROM (

(SELECT Customer.user_name

FROM Customer

WHERE Customer.user_name = @user_name) UNION (

SELECT Guide.user_name

FROM Guide

WHERE Guide.user_name = @user_name

) UNION (

SELECT Agent.user_name

FROM Agent

WHERE Agent.user_name = @user_name

16

)

) AS Sum;

Register a new user

After making sure that the new username is unique, the user will be registered to the

system. From the checkbox, if the “Customer” option is checked, the following will be

run:

INSERT INTO Customer

VALUES(@first_name, @last_name, @age, @email, @phone_number,

@user_name, @password, @address);

If Guide is checked, this will be run instead.

INSERT INTO Guide

VALUES(@first_name, @last_name, @age, @email, @phone_number,

@user_name, @password, @salary);

If Agent is checked, this will be run instead.

INSERT INTO Agent

VALUES(@first_name, @last_name, @age, @email, @phone_number,

@user_name, @password, @salary);

17

3.1.2. Book a Tour

3.1.2.1. UI Mockups

Figure 4: Main Page of the Project

18

Figure 5: Results of the given search, where the city is Honk Kong, and the price of the tours is not limited

19

Figure 6: Payment page

20

Figure 7: Tour Review Page

Figure 8: Guide Review Page

21

3.1.2.2. SQL Queries

List all available tours and apply filters

If a user passes any filter value to the query/procedure, it should consider that filter

otherwise the query should ignore that filter and return all records when listing all

available tours.

SELECT *

FROM Tour

WHERE (1=(CASE WHEN @tour_start_date IS NULL THEN 1 ELSE 0 END) OR
[tour_start_date]=@tour_start_date)

AND (1=(CASE WHEN @city IS NULL THEN 1 ELSE 0 END)

OR [city]=@city) AND (1=(CASE WHEN @price IS NULL THEN 1 ELSE 0 END)

OR [price]=@price)

ORDER BY

(CASE

WHEN tour_start_date IS NOT NULL AND city IS NULL AND price IS NULL
THEN tour_start_date

WHEN tour_start_date IS NULL AND city IS NOT NULL AND price IS NULL
THEN city

WHEN tour_start_date IS NULL AND city IS NULL AND price IS NOT NULL
THEN price

WHEN tour_start_date IS NOT NULL AND city IS NOT NULL AND price IS
NULL THEN tour_start_date, city

WHEN tour_start_date IS NOT NULL AND city IS NULL AND price IS NOT
NULL THEN tour_start_date, price

WHEN tour_start_date IS NULL AND city IS NOT NULL AND price IS NOT
NULL THEN city, price

ELSE tour_start_date, city, price

22

END) ASC, name ASC;

List all available activities of the selected tour

The following query will return the rows associated with the Activities corresponding

to the selected tour.

SELECT activity_id, activity_name, description, acitivity_start_time, activity_end_time,

activity_type

FROM Activity NATURAL JOIN Tour

WHERE activity_name = @activity_name AND activity_type = @activity_type;

Book the tour with the given parameters

The following query will update the associated tables so that a reservation is created for

the booking operation. The row will differ from the reservations that are not paid with an

“is_paid” boolean attribute, which in this case will be true.

This operation includes the number of people that are booking, selected tour, and

selected start date of the customer.

INSERT INTO TourReservation(reserve_id, reserve_start_date, tour_id, num_reserving,

is_booked)

VALUES(@reserve_id, @reserve_start_date, @tour_id, @num_reserving, 1);

Make the payment accordingly

The following query will update the rows associated with the Customer making the

payment.

UPDATE Customer

SET wallet = wallet - @payment_amount

WHERE Customer.ID = @ID;

23

Give feedback (Review) about the tour and the guide

Review the tour

The following query will insert a new row associated with the Tour Review associated

with the specified tour.

INSERT INTO tour_rev(tour_id, review_id, comment, entry_date, rating_stars

VALUES (@tour_id, @review_id, @comment, @entry_date, @rating_stars);

Review the guide

The following query will insert a new row associated with the Guide Review associated

with the specified tour.

INSERT INTO guide_rev(ID, review_id, comment, entry_date, rating_stars)

VALUES (@ID, @review_id, @comment, @entry_date, @rating_stars);

24

3.2. Unique Functionalities

3.2.1. Sightseeing Places

3.2.1.1. UI Mockups

Figure 10: Sightseeing Places Preview page

25

Figure 11: Sightseeing Place information page

3.2.1.2. SQL Queries

List all Sightseeing Places Associated with the Tour

When the tours are listed, the user should be able to look at the sightseeing activities

involved in a specific tour. Hence, this query will list all sightseeing places associated

with that tour.

SELECT place_id, name, start_time, end_time, location, entry_fee, description

FROM Visits NATURAL JOIN SightseeingPlaces

WHERE tour_id = @tour_id;

26

3.2.2. Wallet

3.2.2.1. UI Mockups

Figure 12: Online Wallet Page

3.2.2.2. SQL Queries

Customers make all of their payments from their online wallets. They can deposit

money into this wallet, and when they book a tour or hotel, the payment is done from

this wallet (See 3.1.2.2. - Make the Payment Accordingly).

27

Deposit Cash into the Wallet

UPDATE Customer

SET Customer.wallet = Customer.wallet + @deposit_amount

WHERE Customer.username = @username;

3.2.3. Applying Discounts

3.2.3.1. UI Mockups

Below, Agent Mustafa has created four discount templates, which are stored in the Discount

table of the system. Mustafa can apply those discounts into their associated entities, by clicking

apply. The application of those discounts are described in the next pages.

Figure 13: Managing Discounts

28

Figure 14 : Agent Mustafa applies a discount to the Tour “Tour Best Honk Kong” from a discount template

29

Figure 15: Agent Mustafa applies a discount to the “Hotel Alsancak” from a discount template

Figure 16: Agent Mustafa applies a discount to the “Exit Festival” from a discount template

3.2.3.2. SQL Queries

An agent can apply discounts to the hotel reservations, tour reservations, and extra

activities of a specific tour. There are predetermined discounts, which are located in

the Discount table. The agent can also create new discounts.

The discounts to hotels are done in bulk. The entry is saved into the Discount table,

then it is linked with the Hotel table. The agent can also choose to apply from

discounts that have already been done.

Check if the Current User is an Agent

SELECT *

FROM Agent

WHERE Agent.user_name = @user_name;

30

Create a Discount Template

INSERT INTO Discount

VALUES(@discount_id, @percentage, @discount_time_interval,

@discount_strart_date, @discount_type);

Apply a Discount to Hotels

UPDATE Hotel

SET discount_id = @discount_id

WHERE hotel_ID = @hotel_id;

Apply a Discount to Tours

UPDATE Tour

SET Tour.discount_id = @discount_id

WHERE Tour.tour_id = @tour_id;

Apply a Discount on Extra Activities

UPDATE Activity

SET Activity.discount_id = @discount_id

WHERE activity_id = @activity_id;

31

3.2.4. Languages of Guides

3.2.4.1. UI Mockups

Figure 17: Guide Information Page

32

3.2.4.2. SQL Queries

List the name of the Languages a Guide Can Speak

Customers will see the languages their guides can speak, as well as their

proficiency, through the website. The following query will list those.

SELECT language_name, proficiency

FROM Language

WHERE Language.ID = @guide_id;

4. Implementation Plan
We are going to use the MySQL server in our project as a database management

system. In the backend of the website, we will use .NET Core, and in the front-end,

we may use jQuery as a front-end framework. As a CSS library, we will use Bootstrap

as well. In addition, HTML, CSS, and Javascript will be used throughout the project.

5. Website
The project website [1] is the following: https://cs353-travel-agency-system.github.io/

6. References
[1] “Travel Agency Management System | https://cs353-travel-agency-system.github.io,” GitHub

Pages, [Online]. Available : https://cs353-travel-agency-system.github.io/. [Accessed Oct.

20, 2021].

33

https://cs353-travel-agency-system.github.io/
https://cs353-travel-agency-system.github.io/

